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Abstract. Among the different theoretical approaches able to describe fission, microscopic ones can help us
in the understanding of this process, as they have the advantage of describing the nuclear structure and the
dynamics in a consistent manner. The sole input of the calculations is the nucleon-nucleon interaction. Such a
microscopic time-dependent and quantum mechanical formalism has already been used, based on the Gaussian
Overlap Approximation of the Generator Coordinate Method with the adiabatic approximation, to analyze the
collective dynamics of low-energy fission in238U [1]. However, at higher energies, a few MeV above the barrier,
the adiabatic approximation doesn’t seem valid anymore. Indeed, manifestations of proton pair breaking have
been observed in238U and239U for an excitation energy of 2.3 MeV above the barrier [2–4].Taking the intrinsic
excitations into account during the fission process will enable us to determine the coupling between collective
and intrinsic degrees of freedom, in particular from saddleto scission. Guidelines of the new formalism under
development are presented and some preliminary results on overlaps between non excited and excited states are
discussed.

1 Introduction

The Generator Coordinate Method (GCM) is a very use-
full approach to study large amplitude collective modes, in
particular the fission process. Adiabatic GCM calculations
based on the Gaussian Overlap Approximation (GOA) have
shown a rather good agreement between calculated and
measured fragment mass, and fragment kinetic energy dis-
tributions for low-energy fission [1]. However there are
some evidences that intrinsic excitations may play a role
during the fission process. Indeed, some experiments show
that proton pair breakings occur for an excitation energy of
2.3 MeV above the barrier in238U and239U. First, the to-
tal kinetic energy suddenly drops for an excitation energy
slightly higher than 2.3 MeV [2,3] and second, the pro-
ton odd even effect decreases exponentially to zero for the
same excitation energy [4].

Some theoretical calculations have already studied non-
adiabatic effects during the fission process, most of them
being based on a semi-classical formalism such as Fokker-
Plank equations [5–7], or Hamilton equations with one body
dissipation and two-body viscosity [8,9], or Langevin equa-
tions [10,11]. In addition, a microscopic approach based
on transport theories has recently been proposed by K. Die-
trich et al [12].

Here the extended formalism under development is
sketched, where excited states are taken into account in the
framework of the Generator Coordinate Method. A few pi-
oneering calculations along this line have already been per-
formed in the past [13–15]. Selection rules for the choice
of the pertinent intrinsic excitations are presented. Prelimi-

nary results on overlaps between deformed excited and non
excited basis states are discussed.

2 Non-adiabatic Generator Coordinate
Method

In the non-adiabatic version of the time-dependent Gener-
ator Coordinate Method, the nuclear state is defined as

|Ψ (t)〉 =
∑

i

∫

dq fi(q, t)|Φi(q)〉, (1)

where the time dependent weight functionsfi(q, t) are ob-
tained through

∂

∂ f ∗i (q′, t′)

∫ t2

t1

〈Ψ (t)|Ĥ − i~
∂

∂t
|Ψ (t)〉dt = 0. (2)

In Eq. (1),Ĥ is the nuclear Hamiltonian, and|Φi({q})〉
is a set of static states depending on the collective variable
q and on single particle excitationsi, where i=0 stands for
the lowest-energy state.

The variational principle (Eq. (2)) leads to the general-
ized Hill-Wheeler equation :

∑

i

∫

dq
(

〈Φ j(q′)|Ĥ|Φi(q)〉−i~
∂

∂t
〈Φ j(q′)|Φi(q)〉

)

fi(q, t) = 0.

(3)
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In the usual adiabatic case, without intrinsic excita-
tions, the adiabatic nuclear state|Ψadiab(t)〉 is defined as

|Ψadiab(t)〉 =
∫

dq fadiab(q, t)|Φ(q)〉, (4)

where|Φ(q)〉 is the lowest energy state at a fixedq. In Refs.
[1] and [16] the Gaussian Overlap Approximation has been
used to obtain a Schrödinger-like equation :

Hcollgadiab(q, t) = i~
∂

∂t
gadiab(q, t), (5)

with gadiab(q, t) the Gauss transform offadiab(q, t) and

Hcoll = 〈Φ(q)|Ĥ|Φ(q)〉 − ZPE −
~

2

2
∂

∂q
1

M(q)
∂

∂q
, (6)

where M(q) is the collective mass andZPE is the zero
point energy correction. The Gaussian Overlap Approxi-
mation is based on the fact, among others, that the over-
lap between deformed basis states is indeed, of gaussian
shape:

〈Φ(q′)|Φ(q)〉 = e−G(q−q′)2
. (7)

The validity of the GOA has been discussed in [17,18].
Here the problem deals with the generalization of the GOA
to the case where intrinsic excitations are taken into ac-
count in the formalism. To solve this problem, the excita-
tions along the fission paths have been first studied and the
overlaps between excited states have then been calculated.

3 Study of the 2 quasi-particle excitations
along the fission paths of 236U

Here, the intrinsic deformed states|Φi=0(q)〉 ≡ |Φ(q)〉 are
Hartree-Fock-Bogoliubov states obtained through the vari-
ational principle

δ〈Φ(q)|Ĥ − λN N̂ − λZẐ − λqQ̂|Φ(q)〉 = 0, (8)

where the Lagrange parametersλN , λZ , andλq are deduced
from

{

〈Φ(q)|N̂(Ẑ)|Φ(q)〉 = N(Z)
〈Φ(q)|Q̂|Φ(q)〉 = q.

(9)

In the present calculations,̂Q is the axial quadrupole
operator defined as

Q̂ =

√

16π
5

A
∑

i=1

r2
i Y20 =

A
∑

i=1

(2z2
i − x2

i − y
2
i ) (10)

andĤ is the nuclear many-bodyeffective Hamiltonian built
with the finite-range effective D1S force of Gogny [19,20].
The HFB equations are solved by expanding the single par-
ticle states onto one-center and two-centers axial harmonic
oscillator basis. Because calculations are performed in an
even-even nucleus for which K= 0 – with K the projec-
tion of the spin onto the symmetry axis –, the HFB nuclear
states are even under time-reversal symmetryT . Further-
more, we restrict the Bogoliubov space by imposing the
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Fig. 1. (Color online) Upper panel: Potential energy along the
asymmetric path in236U as a function of the elongation. Lower
panel: energy of the lowest neutron (dashed line) and proton(dot-
ted line) two quasi-particle excitation along the asymmetric path.

self-consistent symmetrŷT Π̂2, whereΠ̂2 is the reflection
with respect to the xOz plane.

For the excited states, K=0 two-quasi-particle (2qp)
excitations have been selected. The restrictions to K=0 quasi-
particle states may be justified by the fact that axial sym-
metry is enforced in the present calculation and that only
K=0 excitations may be coupled to the lowest energy K=0
HFB states in even-even nuclei. We define the excited states
|Φi>0(q)〉 through

|Φi(q)〉 = ηq+
i η

q+
ī
|Φ(q)〉, (11)

whereηq+
i is the creation operator of a quasi-particle in the

state i, and̄i is the time-reversed state of i.
Since the purpose of this work is the study of the fission

process at rather low energy, the other kinds of N quasi-
particle excitations (4qp, 6qp...) have been neglected. More-
over, a cut off at 5 MeV has been used on the 2 quasi-
particle excitation energy. Here, no self-consistent block-
ing is performed, and the HFB vacuum is not polarized
by the excited quasi-particles. Thus, by construction, fora
given value of the collective variable q, each 2qp state is
orthogonal to the 0qp HFB state and to all the other 2qp
states, that is〈Φi(q)|Φ j(q)〉 = 0, for i , j.

Then, by considering such excited intrinsic states, the
static basis used to define the non adiabatic GCM state (see
Eq. (1)) is enlarged with orthogonal states. The main draw-
back is that the mean particle number of the 2qp states can
deviate fromN0 and Z0, with N0 = 〈Φ(q)|N̂|Φ(q)〉 and
Z0 = 〈Φ(q)|Ẑ|Φ(q)〉. Here, the quasi-particle excitations
are selected such as :

〈φi|N̂(Ẑ)|φ j〉 = 〈φ|N̂(Ẑ)|φ〉 + ∆N(Z), (12)

with
∆N(Z) ≤ 1. (13)
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Calculations have been performed in236U. The poten-
tial energy and the excitation energies of the lowest 2qp
neutron and 2qp proton states are plotted as functions of
the quadrupole deformation along the asymmetric path on
Fig. 1. We clearly see that these energies are varying in
the range 1 to 3 MeV and is equal to 2 MeV in average
for both neutron and proton excitations. These excitations
may be low enough to play a role during the fission pro-
cess. Indeed, these results have to be compared with those
obtained in the experiment of238U and239U where proton
pair breakings are observed for an excitation energy of 2.3
MeV above the barrier [2–4].

4 Calculation of the overlaps

In Fig. 2 the overlaps〈Φ(q)|Φ(q′)〉 between HFB states at
different deformations are plotted as functions of q-q’ for
different (q + q′)/2 values corresponding to HFB ground-
state, first saddle point, superdeformed minimum, second
saddle point and in the descent to scission.

-3000 -2000 -1000 0 1000 2000 3000
q-q’ (fm

2
)

0

0.2

0.4

0.6

0.8

1

3000 fm
2

5000 fm
2

8000 fm
2

11000 fm
2

14000 fm
2

Fig. 2. (Color online) Comparison between the overlaps
〈Φ(q)|Φ(q′)〉 calculated for different values of (q + q′)/2.

At first sight, the overlaps seem to have gaussian shapes
as expected. The variation of the width remains small, ex-
cept for (q + q′)/2 = 5000f m2 where the width is divided
by 2 compared to others. The shape of these overlaps will
be studied in more details in a near future.

Overlaps〈Φ(q)|ηq
ī
η

q
i η
+q′

i η
+q′

ī
|Φ(q′)〉 between 2 qp ex-

cited states are plotted in Fig. 3 for different qp excitations,
namelyKΠ = 1/2−, 3/2−, and 5/2−, with K the projection
of the angular momentum on the symmetry axis andΠ the
parity. They are compared with overlaps〈Φ(q)|Φ(q′)〉 be-
tween HFB lowest energy states at (q + q′)/2 = 3000f m2.
The more striking feature is that all the widths of the dif-
ferent overlaps are almost the same since all the curves are
superimposed. This property will probably be used during
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Fig. 3. (Color online) Overlaps〈Φi(q)|Φi(q′)〉 for quasi-particle
states withKΠ = 1/2−, 3/2−, and 5/2−, compared to〈Φ(q)|Φ(q′)〉
at (q + q′)/2 = 3000f m2
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Fig. 4. (Color online) Overlaps〈Φi(q)|Φ j(q′)〉 between different
two quasi-particle excitations forKΠ = 1/2−, 3/2−, and 5/2− at
(q + q′)/2 = 3000f m2

the development of the new formalism based on the non-
adiabatic GCM.

Non diagonal overlaps〈Φi(q)|Φ j(q′)〉 with i , j are
plotted on Fig.4. We clearly see that all non diagonal over-
laps are found to be zero forq = q′, as expected since
2qp states are orthogonal at a given deformation by defini-
tion. The maximum of the overlaps is predicted to be very
small, namely 0.005 compared to 1 for the diagonal terms
〈Φi(q)|Φi(q′)〉. They appear to be symmetric in a first or-
der of approximation and have a small amplitude and an
approximate sinusoidal shape.

The overlaps〈Φ(q)|Φi(q′)〉 are plotted on Fig. 5. The
amplitudes are found to be less or equal to 0.08, and the
shape is almost antisymmetric.

In summary, all these preliminary results show that non
diagonal overlaps〈Φi(q)|Φ j(q′)〉with i , j are predicted to
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Fig. 5. (Color online) Overlaps between two quasi-particle ex-
cited states and HFB minima forKΠ = 1/2−, 3/2−, and 5/2− at
(q + q′)/2 = 5000f m2

be much smaller than diagonal ones. A more precise study
of the shape of all these overlaps is now underway.

5 Conclusion

A study of the role played by the intrinsic excitations along
the fission paths has been undertaken. Preliminary results
on norm overlaps between non-excited and excited 2 qp
states have been presented in236U. The next step is now to
calculate the energy kernel between different basis states.
On the long range, we expect to develop a fully micro-
scopic non adiabatic formalism to improve results on fis-
sion fragment properties such as fragment charge and mass
distributions.
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